Closely Related Wolbachia Strains within the Pumpkin Arthropod Community and the Potential for Horizontal Transmission via the Plant

S. Sintupachee ${ }^{1}$, J. R. Milne ${ }^{1}$, S. Poonchaisri ${ }^{2}$, V. Baimai ${ }^{1,3}$ and P. Kittayapong ${ }^{1,3}$
(1) Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
(2) Entomology and Zoology Group, Plant Protection Research and Development Office, Ministry of Agriculture and Co-operatives, Chatuchak, Bangkok 10900, Thailand
(3) Center for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

Received: 7 October 2005 / Accepted: 7 October 2005 / Online publication: 6 April 2006

Abstract

Phylogenetic studies have implicated frequent horizontal transmission of Wolbachia among arthropod host lineages. However, the ecological routes for such lateral transfer are poorly known. We surveyed the species of two arthropod communities, one on pumpkin and the other on loofah plants, for Wolbachia, constructed wsp gene phylogenies of those Wolbachia strains found to infect community members, and established ecological links among infected members. Four taxonomically diverse insects in the pumpkin arthropod community contained very closely related Wolbachia wsp sequences ($<1.5 \%$ divergence by Kimura-2-parameter distances). These insects, namely, the whitefly Bemisia tabaci, the planthopper Nisia nervosa, the flea beetle Phyllotreta sp., and the fleahopper Halticus minutus, were all collected from pumpkin leaves. They were ecologically linked through feeding on the same leaf substrate. Unlike other infected leaf insects, the whitefly population appeared to have a permanent breeding relationship with pumpkin plants, and high and stable, but not fixed, monthly Wolbachia infection rates. Our findings suggest potential roles for the plant in Wolbachia transmission and for whiteflies in being an infection source for other pumpkin leaf-feeding insects.

Introduction

Wolbachia are endosymbiotic α-proteobacteria that are extremely widespread among arthropod species [30] and

[^0]are well known for their diverse effects on arthropod reproduction [23, 24, 29]. Normally, Wolbachia are vertically transmitted from mother to offspring. However, phylogenetic studies have often detected very closely related Wolbachia gene sequences in distantly related arthropods. This suggests either that horizontal transmission of whole bacteria between host species had occurred [26, 28, 32] or that genes had transferred between Wolbachia bacteria that had come into close proximity within the same host $[1,10,12,31]$. Whether it be Wolbachia bacteria or genes that transfer, an ecological link between species is required that brings Wolbachia into novel hosts [9].

Evidence from both phylogenetic [3, 22, 27] and experimental studies $[6,8]$ that specifically target the parasitoid-host relationship point to this interaction as being a likely transfer route. However, most strains that appear closely related in Wolbachia phylogenies occur in arthropods not linked by this interaction and other means of horizontal transfer seem likely.

We took a different approach for determining potential Wolbachia horizontal transmission routes among arthropods. Rather than target a specific ecological interaction such as parasitoidism, we collected all available arthropods within two arthropod communities, one on pumpkin (Cucurbita moschata) and the other on loofah (Luffa cylindrica) plants, without prior knowledge of the interactions among community members. We then constructed Wolbachia phylogenies and determined the ecological links among infected species. We found four taxonomically diverse insect species in the pumpkin community that harbor very similar Wolbachia strains. All four species feed on pumpkin leaf tissue. We discuss the potential for the plant to be a medium for Wolbachia transmission among leaf-feeding insects.

Methods

Arthropod Collection and Identification. Arthropods were collected from a $10 \times 10 \mathrm{~m}$ pumpkin and loofah field plot at Sai Yok ($14^{\circ} 00^{\prime} \mathrm{N}, 99^{\circ} 33^{\prime} \mathrm{E}$), western Thailand. In many Wolbachia surveys, few specimens per species are tested and negative results may reflect low sample size rather than uninfected species. We undertook intensive surveys over more than a year to test as many specimens as possible to improve Wolbachia detection. Sampling was conducted monthly from October 1999 to September 2000 and in October and November 2001. All arthropods on arboreal plant parts were collected into labeled vials, taken back live to the laboratory, and frozen $\left(-20^{\circ} \mathrm{C}\right)$. Fruits, flowers, and leaves infested internally with arthropods were brought back to an insectary ($T=26 \pm$ $\left.2^{\circ} \mathrm{C}, \mathrm{RH}=65 \pm 10 \%\right)$ and placed on moist sawdust in ventilated cylindrical plastic containers. Arthropods that emerged were placed in labeled vials and frozen $\left(-20^{\circ} \mathrm{C}\right)$.

Arthropods were sorted into species groups. Some individuals of each species were identified and deposited as voucher specimens in the Insect Museum of the Plant Protection Research and Development Office, Department of Agriculture, Bangkok. The remainder was tested for Wolbachia. All except whiteflies (F. Aleyrodidae, O. Homoptera) were identified using specialist morphological keys. Whiteflies were identified molecularly by Dr. Paul Debarro (CSIRO, Australia).

Polymerase Chain Reaction. DNA was extracted from reproductive tissues removed from large specimens. Whole abdomens or whole individuals were used for small specimens. The STE method [16] was used for 1999/2000 samples and phenol-chloroform extraction [20] for 2001 specimens.

A reaction mix was made for each polymerase chain reaction (PCR) run; $20 \mu \mathrm{~L}$ of the mixture [$2 \mu \mathrm{~L} 10 \times$ buffer (Promega), $2 \mu \mathrm{~L} \mathrm{MgCl} 2$ (Promega), $0.5 \mu \mathrm{~L} 100 \mathrm{mM}$ dNTPs, $0.5 \mu \mathrm{~L}$ each of forward and reverse primer, $1 \mu \mathrm{~L}$ Taq DNA polymerase, and $13.5 \mu \mathrm{~L}$ double-distilled $\mathrm{H}_{2} \mathrm{O}$] was added to each $0.65-\mathrm{mL}$ microcentrifuge tube. DNA template $(1 \mu \mathrm{~L})$ was added to each reaction volume and topped with 1 drop of sterilized mineral oil. PCR amplification used the following thermal profile: one 3-min cycle at $95^{\circ} \mathrm{C} ; 30$ cycles of 1 min each at 95,55 , and $72^{\circ} \mathrm{C}$; one $10-\mathrm{min}$ cycle at $72^{\circ} \mathrm{C}$. PCR products and a $1-\mathrm{kb}$ ladder (Promega) were loaded onto a 1% agarose gel, stained with ethidium bromide, and visualized under a UV transilluminator.

Every month for each species, the first PCR was a batch PCR in which the DNA of up to 10 specimens ($0.1 \mu \mathrm{~L}$ template/specimen) was pooled. If a batch was Wolbachia-positive, then $1 \mu \mathrm{~L}$ DNA template of each specimen was tested. fts Z primers [7] were used to detect Wolbachia. A mosquito from a Wolbachia-infected Aedes
albopictus culture (Department of Biology, Mahidol University) was used as a positive control in each PCR run. A negative control to check for contamination consisted of the normal DNA extraction procedure but without a specimen. Negative results may have been due to unsuccessful DNA extraction. To check this, 38% of samples negative by $f t s Z$ primers were tested for insect DNA using the insect mitochondrial 12 S rRNA primers, 12 SAI and 12SBI [16].

Cloning and Sequencing. DNA from one Wolbachia-positive specimen of each infected species was used for cloning and sequencing. PCR products were obtained from DNA amplification using the general wsp primers, wsp81F and wsp691R [32], and the same thermal profile as for $f t s Z$ amplification except for 35 cycles in the

Table 1. Wolbachia host species from which wsp sequences were derived for phylogenetic analyses

Host species	Accession no.
From this study	
Bemisia tabaci	AY157679
Diachasmimorpha longicaudata	AY157680
Graptomyza brevirostis	AY157681
Halticus minutus	AY157682
Onthophagus vaulongeri	AY157683
Phyllotreta sp.	AY157684
Nisia nervosa	AY157685
Extracted from GenBank	
Acraea encedon	AJ130716
Aedes albopictus A	AF020058
Aedes albopictus B	AF020059
Bemisia afer	AJ291370
Bemisia tabaci	AJ291376
Blastophaga brownii	AF521165
Culex quinquefasciatus	AF020060
Drosophila melanogaster (Aub)	AF020063
Drosophila simulans (Coff)	AF020067
Extracted from GenBank (ctd)	
Drosophila simulans (Riv)	AF020070
Drosophila simulans (Haw)	AF020068
Drosophila simulans (Nou)	AF020074
Ephestia cautella A	AF020075
Ephestia cautella B	AF020076
Glossina austeni	AF020077
Glossina brevipalpis	AF164685
Glossina centralis	AF020078
Glossina morsitans	AF020079
Laodelphax striatellus	AF020080
Muscidifurax uniraptor	AF020071
Nasonia vitripennis	AF020081
Phlebotomus papatasi	AF020082
Rhagoletis cerasi	AF418557
Tagosedes orizicolus	AF020085
Torymus bedeguaris	AF071915
Tribolium confusum	AF020083
Trichogramma deion	AF020084

The wsp sequences from this study were lodged in GenBank; other wsp sequences were extracted from GenBank. Accession numbers of all sequences are given in the table.

Table 2. PCR detection of Wolbachia among pumpkin arthropod species at Sai Yok, western Thailand

Arthropod species	PP	No. +vel tested
Class Arachnida		
Order Arachnida		
F. Parasitidae Unid. sp. 1	L	0/23
F. Parasitidae Unid. sp. 2	L	0/1
Class Insecta		
Order Blattaria		
Blattella germanica (Linnaeus)	L Fr	0/4
Order Coleoptera		
Astycus sp.	L	0/1
Aulacophora frontalis Baly	L Fl	0/7
Aulacophora indica Gmelin	L Fr	0/70
Aulacophora similis (Olivier)	Fl	0/1
Blasyrus herthus Hbst.	L	0/1
Calomyeterus sp.	L	0/2
Coccinella transversalis Fabricius	L	0/7
Coelophora bisellata Mulsant	L	0/5
Epilachna indica Mulsant	L	0/1
Epilachna vigintioctopunctata Fabricius	L	0/11
Eugnathus alterans Fabricius	L	0/1
Haptoncus sp.	Fl	0/10
Lema rufotestacea Clark	L	0/4
Lycostomus lateritius Gorham	L	0/1
Lygaria westermanni Stal	L	0/2
Micraspis discolor (Fabricius)	L	0/1
Monolepta signata (Olivier)	\underline{L}	1/19
Onthophagus vaulongeri Bouche*	$\underline{\text { Fr }}$	1/6
Phrixopogen hausti Marshall	$\overline{\mathrm{L}}$	$\overline{0 / 1}$
Phyllotreta sp.*	L	1/4
F. Carabidae Unid. sp.	$\overline{\mathrm{F}}$	$\overline{0 / 10}$
F. Staphylinidae Unid. sp.	L	0/2
Order Diptera		
Agromyza sp.	L	0/3
Bactrocera cucurbitae (Coquillett)	Fr	0/1
Bactrocera diversa (Coquillett)	Fr	0/1
Bactrocera tau (Walker)	Fr	3/44
Graptomyza brevirostis (Wiedemann)*	Fr	3/5
Order Diptera (ctd)		
Melanagromyza sp.	Fl	2/2
Sarcorohdendorfia sp.	$\overline{\mathrm{Fr}}$	0/1
Sympycnus sp.	Fr	0/13
Syritta rufifacies Big	L	0/2
F. Agromyzidae Unid. sp.	Fl	0/1
F. Drosophilidae Unid. sp. 1	Fr	0/5
F. Drosophilidae Unid. sp. 2	Fr	0/1
Order Hemiptera		
Cletus trigonus Thunberg	L	0/6
Dysdercus cingulatus (Fabricius)	L	0/1
Halticus minutus Reuter*	L	49/129
Leptocorisa oratorius (Fabricius)	L	$0 / 1$
Leptoglossus gonagra (Fabricius)	L	0/3
Malcus scutellatus Distant	L	0/5
F. Plataspididae Unid. sp.	L	0/3
Order Homoptera		
Bemisia tabaci (Gennadius)*	L	127/172
Botrogonia indistincta Walker	\bar{L}	0/7
Callitettix versicolor Fabricius	L	0/10
Geocoris sp.	Fr	0/2
Nisia nervosa (Motsch)*	\underline{L}	1/5
F. Aphididae Unid. sp. 1	\bar{L}	$\overline{0 / 2}$
F. Cicadellidae Unid. sp. 1	L	0/2

Table 2. Continued

Arthropod species	PP	No. +ve/ tested
F. Cicadellidae Unid. sp. 2	L	0/2
Order Hymenoptera		
Apis florea Fabricius	Fl	0/1
Celyphus scutatus Wiedeman	Fl	0/3
Diachasmimorpha longicaudata (Ashmead)*	Fr	15/19
F. Apidae Unid. sp.	$\overline{\mathrm{Fr}}$	0/1
F. Formicidae Unid. sp.	L	0/5
Order Odonata		
Ischnura sp.	L	0/5
Order Thysanoptera		
Frankliniella schultzei (Trybom)	$\underline{L} \mathrm{Fl}$	1/11

Species that tested positive using ftsZ primers are underlined; those confirmed by wsp sequencing are marked by an asterisk. Some species were identified to family but not to genus or species, and are represented by their family (F.) name followed by "Unid. sp." L: leaf; Fr: fruit; Fl: flower.
last step. One microlitre of each PCR product was used for DNA ligation and cloning using a pGEM-T plasmid vector (TA cloning Kit, Promega) inserted into Escherichia coli bacteria following the manufacturer's instructions. Three clones for each Wolbachia strain were sequenced using the dideoxy chain termination method [21] on an ABI automated sequencer.

Phylogenetic Analyses. Seven Wolbachia wsp sequences from pumpkin insects and 27 from GenBank were used in phylogenetic analyses (Table 1). Sequences were aligned by the clustal algorithm followed by manual modification. The third hypervariable region of the wsp gene (positions 519-559) was excluded because it could not be confidently aligned [32]. Phylogenies were generated by maximum parsimony (MP), maximum likelihood (ML), and neighbor-joining (NJ) methods. For MP analysis, heuristic searches with a stepwise addition method were performed and gaps were treated as missing data. For NJ analysis, a tree was generated from Kimura-2-parameter (K-2-p) distances by Modeltest 2.1 [17] using heuristic searches. For ML analysis, substitution (transversion/ transition) rates were estimated and the general time reversible model was used; the proportion of invariant sites was 0.418 and the value of the α parameter of the gamma distribution was set at 1.33 as determined by Modeltest 2.1. Phylogenetic trees were generated using PAUP 4.0 b1 [25]. All trees were midpoint-rooted. Bootstrap values were obtained from 1000 replicates each for NJ and MP analyses and 100 replicates for ML analysis.

Results

Wolbachia Distribution among Species. A total of 59 arthropod species (from 930 specimens) collected from
pumpkin and loofah plants during the 2 years of sampling were PCR-tested for Wolbachia (Tables 2 and 3). All 59 species were found on pumpkin plants, whereas only nine occurred on loofah plants. Collected arthropods encompassed two arthropod classes, the Arachnida (with two species in the mite Order Acarina) and the Insecta (comprising 57 species).

Positive PCR results were obtained for 11 insect, but no mite, species from pumpkin plants (Table 2): three each in the Orders Coleoptera (Monolepta signata, Onthophagus vaulongeri, Phyllotreta sp.) and Diptera (Bactrocera tau, Graptomyza brevirostis, Melanagromyza sp.), two in the Order Homoptera (Bemisia tabaci, Nisia nervosa), and one each in the Orders Hymenoptera (Diachasmimorpha longicaudata), Hemiptera (Halticus minutus), and Thysanoptera (Frankliniella schultzei). Only one insect species from loofah in the Order Diptera (Bactrocera tau) gave positive PCR results (Table 3). Of those specimens that tested negative using fts Z primers, 274 were PCR-tested using 12 S rRNA primers. Of these, 206 or 75.2% were positive, thus indicating that DNA had been successfully extracted from the majority of specimens.

Wolbachia presence was confirmed by $w s p$ sequencing in seven of the 11 ftsZ -positive species (Tables 2 and 3). Three-the wasp parasitoid, Diachasmimorpha longicaudata, the syrphid fly, Graptomyza brevirostis, and the scarab beetle, Onthophagus vaulongeri-emerged from pumpkin fruit. The remaining four, i.e., the white fly, Bemisia tabaci, the fleahopper, Halticus minutus, the planthopper, Nisia nervosa, and the flea beetle, Phyllotreta sp., were found on pumpkin leaves. For the four unconfirmed species (the leaf beetle, Monolepta signata, the tephritid fruit fly, Bactrocera tau, from both pumpkin and loofah fruit, the stem fly, Melanagromyza sp., and the flower thrips, Frankliniella schultzei), DNA could not

Table 3. PCR detection of Wolbachia among loofah insect species at Sai Yok, western Thailand

Arthropod species	$P P$	No. +ve/tested
Order Blattaria Blattella germanica (Linnaeus) Order Coleoptera	Fl	$0 / 1$
Aulacophora frontalis Baly Aulacophora indica Gmelin	L	$0 / 10$
Epilachna indica Mulsant Epilachna vigintioctopunctata Fabricius	L	$0 / 4$
Order Diptera Bactrocera tau (Walker)	L	$0 / 1$
Order Homoptera Botrogonia indistincta (Walker) Callitettix versicolor Fabricius	$\underline{\mathrm{Fr}}$	$\underline{13 / 222}$
Order Thysanoptera	L	$0 / 2$
Frankliniella schultzei Trybom	L	$0 / 7$

[^1]be amplified using $w s p$ primers. This was despite trying common remedies for such PCR problems, such as altering the DNA template concentration, PCR reaction mix, and thermoprofile. We only had one or two positive samples for the leaf beetle, stem fly, and flower thrips, and DNA may have denatured after long-term storage. Attempts to collect more specimens of these three species were unsuccessful. For B. tau flies, however, we had numerous fresh ftsZ-positive DNA samples but could not amplify any using wsp primers. PCR bands using fts Z primers for these flies were slightly lower and much less intense than those for other infected species. In addition, attempts to maintain Wolbachia in fly cultures were unsuccessful because PCR did not detect these bacteria in successive generations. We therefore suspect the positive $f t s Z$ results for B. tau to be a PCR artifact and that it was not infected by Wolbachia.

Phylogenetic Relationships among Wolbachia Strains. The ML, MP, and NJ trees all showed the division of Wolbachia strains into two major clades, which correspond with the A and B groups of previous 16 S rRNA [16], ftsZ [28] and wsp [32] phylogenetic analyses. Within each of the A and B groups, the three trees were almost identical, with minor differences in positions of some internal nodes. Bootstrap support was greater than 50% for the majority of nodes in each tree with many being greater than 70%. For brevity, we show only the NJ tree (Fig. 1).

Within the A group, the only difference among trees was the placement of the Glossina brevipalpis Wolbachia strain. In both the ML and MP trees, this strain was placed in the same clade as the Wolbachia strains of Drosophia simulans (Riv), Diachasmimorpha longicaudata, and Blastophaga brownii. The node for this placement, however, had low ($<50 \%$) bootstrap support in both trees. The NJ tree, in contrast, placed the Wolbachia strain of G. brevipalpis in the same clade, with high (90\%) bootstrap support, as those of Glossina morsitans, Nasonia vitripennis, and Glossina centralis (Fig. 1). Within the B group, the only difference was the placement of the clade containing the Onthophagus vaulongeri and Trichogramma deion Wolbachia strains. In the ML tree, this clade was separate from the large clade comprising the Wolbachia strains of Laodelphax striatellus, Acraeaencedon, Bemisia afer, Bemisiatabaci, Nisia nervosa, Phyllotreta sp., Halticus minutus, Torymus bedeguaris, and Tribolium confusum, whereas in the MP and NJ trees the O. vaulongeri-T. deion clade was closely related to this large clade with high bootstrap support of 89 and 98%, respectively.

Wolbachia strains in pumpkin arthropods encompassed both A and B groups (Fig. 1). The Wolbachia strains of the wasp parasitoid, Diachasmimorpha longicaudata, and the syrphid fly, Graptomyza brevirostis,

Figure 1. A midpoint rooted neighbor-joining phylogenetic tree of Wolbachia wsp sequences including seven sequences from Wolbachiainfected pumpkin insects (bold and underlined). Numbers at nodes are bootstrap values greater than 50% obtained from 1000 replicates. A and B refer to the major Wolbachia divisions.
both from fruit, were placed in the A group, whereas Wolbachia strains of the remaining four species, i.e., Phyllotreta sp., Halticus minutus, Bemisia tabaci, and Nisia nervosa, collected from leaves and the scarab beetle, Onthophagus vaulongeri, from fruit were placed in the B group. The Wolbachia A group strains of D. longicaudata and G. brevirostis were placed into separate clades (Fig. 1); the G. brevirostis strain with the Aedes albopictus A strain, and the D. longicaudata strain in the clade
containing the D. simulans (Riv) and B. brownii strains. B group Wolbachia strains from pumpkin insects were placed into two clades. The four Wolbachia strains from pumpkin leaf insects, namely Bemisia tabaci, N. nervosa, Phyllotreta sp., and H. minutus, were all placed in the large clade containing the Laodelphax striatellus, A. encedon, Tribolium confusum, B. afer, B. tabaci (from GenBank), and Torymus bedeguaris Wolbachia strains (Fig. 1). Bootstrap support was very high for this

Figure 2. Monthly fluctuations of Wolbachia infection in populations of the fleahopper, Halticus minutus (Δ), and the whitefly, Bemisa tabaci (■), on pumpkin plants determined by PCR using ftsZ primers at monthly intervals from October 1999 to September 2000 at a single location at Sai Yok, western Thailand. Fleahoppers were absent in October 1999 and April/May 2000; whiteflies were absent in October/November 1999.
placement, with $\geq 99 \%$ support in all three trees. Less than $1.5 \% \mathrm{~K}-2-\mathrm{p}$ divergence occurred among the four strains from pumpkin leaf insects. The remaining B group Wolbachia strain, from O. vaulongeri from pumpkin fruit, was placed in the same clade with Trichogramma deion with 100% bootstrap support.

Wolbachia Seasonal Fluctuations. Monthly Wolbachia infection rates in populations of the whitefly and the fleahopper, both of which occurred in high numbers on pumpkin plants, were determined from October 1999 to September 2000. Whiteflies did not appear on plants for the first 2 months. Wolbachia infection rate in the whitefly population ranged from 42.9 to 94.7% (Fig. 2), with a mean \pm SD of $72.9 \pm 14.1 \%$ per month, but did not vary significantly among months ($\chi^{2}=13.82$, $d f=10, p=0.181, \alpha=0.05)$. Except for the first month, both immature and adult whitefly stages were present on pumpkin leaves all year. The pumpkin fleahopper did not occur all year, being absent in October 1999 and April/May 2000. Only adults, but no nymphs, were found. Wolbachia infection rate fluctuated markedly (Fig. 2) with a mean \pm SD of $59.2 \pm 27.0 \%$. Statistically, infection rate depended significantly on the month ($\chi^{2}=$ 18.53, $d f=7, p=0.010 ; \alpha=0.05)$.

Discussion

The total of 59 arthropod species collected from pumpkin plants (Table 2) indicates the many potential interactions within a local community. That seven of these species harbored Wolbachia (Table 2) highlights the potential for transmission among interacting species. We found that the degree of genetic similarity among Wolbachia strains depended on the plant part from which their insect hosts were collected.

The three species from pumpkin fruit, namely the wasp parasitoid, Diachasmimorpha longicaudata, the syrphid fly, Graptomyza brevirostis, and the scarab beetle, Onthophagus vaulongeri, were taxonomically distantly related and harbored very different wsp sequences. The parasitoid-host interaction is the most commonly hypothesized route by which Wolbachia [2, 26, 27, 28], or at least Wolbachia genetic material [31], may transfer across distantly related host lineages. However, D. longicaudata is neither a parasitoid of the syrphid fly nor the scarab beetle; rather, it is a parasitoid of tephritid fruit flies. In addition, the Wolbachia strain in D. longicaudata was not closely related to those of any other pumpkin arthropod, making horizontal transfer via this route improbable, at least in this community.

Like the Wolbachia-infected insects from fruit, the four infected insects collected from pumpkin leaves, namely, the white fly, Bemisia tabaci, the fleahopper, Halticus minutus, the planthopper, Nisia nervosa, and the flea beetle, Phyllotreta sp., were very taxonomically diverse, encompassing four families and three orders. In stark contrast to fruit insects, wsp sequences from Wolbachia strains infecting the four leaf insects were very closely related ($<1.5 \% \mathrm{~K}-2-\mathrm{p}$ divergence). The clade comprising these sequences (Fig. 1) was very well supported with high bootstrap values ($\geq 99 \%$) for all three phylogenetic analyses.

Such a pattern is suggestive of horizontal transmission of Wolbachia bacteria $[2,24,28]$ in the past among insects that inhabit pumpkin leaves. What do these four insects do that could facilitate such transmission? Haemolymph-to-haemolymph Wolbachia transfer by contact between wounded individuals has been demonstrated in isopods [19]. However, during our 2 years of arthropod collection from pumpkin plants, we never observed any kind of close contact between leaf-dwelling insects, and transmission through this route seems un-
likely. Parasitoidism also seems an unlikely means of Wolbachia transfer between pumpkin leaf insects, because none of the four infected species we collected are parasitoids of the others. In addition, these four insects encompass four families in three orders. It is therefore extremely unlikely that they share parasitoids and that Wolbachia was transmitted among them by this route.

There is one activity that all four leaf insects have in common: they all feed on leaf tissues. This suggests that leaf feeding may be a means by which Wolbachia could transfer to new host species. The small differences among wsp sequences indicates that any such transmission occurred sufficiently long in the past for some divergence to have occurred and that it is an occasional event. Our results do not form an isolated case among plant-feeding insects. Moths whose larvae feed on rice plants as well as rice planthoppers and leafhoppers also harbor Wolbachia strains with very similar $w s p$ sequences [11, 15]. Further, identical Wolbachia wsp sequences have been reported in two mulberry leaf-feeding hoppers by Mitsuhashi et al. [14]. In a novel hypothesis, these authors suggested that Wolbachia may have transferred between hopper species through their plant-feeding activities in a manner analagous to that of leafhopper-vectored plant bacterial pathogens. In what follows, we apply this hypothesized process to Wolbachia transmission within the pumpkin leaf insect community. By examining each transmission step as well as our Wolbachia infection rate data, we show that: (1) two of the four infected insects are unlikely to be Wolbachia transmitters, and (2) of the remaining two insects, the whitefly is potentially of central importance to Wolbachia transmission and maintenance within the pumpkin insect community.

Wolbachia has been detected in the salivary glands of several insects [4], including those that feed on plants [14]. Insects with piercing-sucking mouthparts, such as the whitefly and planthopper in this study, may be particularly suited to Wolbachia transmission via the plant. Such insects typically inject saliva into plant cells to digest their contents before ingesting cell fluids [5, 13]. In so doing, these insects inoculate plants with pathogens and presumably other microorganisms such as Wolbachia that occur in saliva. For another insect to acquire Wolbachia, these bacteria must survive in the plant environment to be taken up live by plant-feeding insects. Because the structural integrity of the cell is maintained after feeding by piercing-sucking insects $[13,18]$, the survival and spread within the plant of introduced microorganisms including Wolbachia is likely. In contrast, the fleahopper feeds by lacerating parenchyma cells [13], and the flea beetle cuts tissue from leaves with its chewing mouthparts. So, both destroy plant cells and are unlikely to inoculate Wolbachia into plants. Nevertheless, they could possibly acquire Wolbachia by feeding on leaf tissues previously fed upon by infected whiteflies or planthoppers.

The whitefly and the fleahopper differed considerably in their patterns of monthly Wolbachia infection rate (Fig. 2). Two factors are considered important influences on Wolbachia infection rates within populations: the rate of maternal transmission to offspring and infection effects on host fitness [24].

In the fleahopper population, infection rate fluctuated greatly from month to month (Fig. 2). This fleahopper appears not to breed on pumpkin leaves because nymphs were never found. Maternal transmission rate is thus not relevant. Effects of Wolbachia on fleahopper fitness, however, may be important to host survival. Nevertheless, differential and fluctuating survival rates among Wolbachia-infected and uninfected fleahoppers seem unlikely to account for the large monthly fluctuations in Wolbachia infection rate. That this fleahopper breeds little on pumpkin indicates that the population is mainly migrant individuals and that Wolbachia infection is determined in breeding populations on other plant hosts. Infection rates may differ among these other populations, and their relative contributions to the pumpkin fleahopper population may vary sufficiently to cause the observed major monthly fluctuations in Wolbachia infection rate.

In the whitefly population, monthly Wolbachia infection rate was relatively high and stable (Fig. 2) although not fixed in the population, with infection rates generally being less than 90%. This population breeds on pumpkin leaves, because both adult and immature stages were observed. Either of the two factors presented earlier, therefore, could account for the observed monthly rates of Wolbachia infection. Of all the insects feeding on pumpkin leaves, the whitefly being infected at high and stable rates by Wolbachia-having a close, perhaps even permanent, breeding relationship with pumpkin plants, and because of its piercing-sucking feeding mannermay be of central importance to hypothesized transmission and maintenance of Wolbachia within the pumpkin arthropod community. Direct experimental tests of whitefly Wolbachia transmission via the plant, in which uninfected whiteflies are allowed to feed on pumpkin leaves recently fed on by Wolbachia-infected whiteflies and then tested for Wolbachia, are now warranted.

Acknowledgments

We are grateful to Sanwapan Sanpittaya for cultivating pumpkin and loofah plants, Wanwisa Jamnongluk for phylogenetic analysis advice, Samnieng Theinthong and Nutchaya Klinpikul for technical assistance, Vichit Koonthong for insect and Sangvorn Kitthawee for parasitoid identification, Paul DeBarro for whitefly molecular identification, and Amporn Duangkaew for administrative support. This research was financed by the TRF/ BIOTEC Special Program for Biodiversity Research and

Training (BRT139026) and the Thailand Research Fund (RTA428001).

References

1. Bordenstein, SR, Wernegreen, JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21: 1981-1991
2. Cook, J, Butcher, R (1999) The transmission and effects of Wolbachia bacteria in parasitoids. Res Pop Ecol 41: 15-28
3. Cordaux, R, Michel-Salzat, A, Bouchon, D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14: 237-243
4. Dobson, SL, Bourtzis, K, Braig, HR, Jones, BF, Zhou, WG, Rousset, F, O'Neill, SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29: 153-160
5. Gray, SM, Banerjee, N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63: 128-148
6. Heath, BD, Butcher, RDJ, Whitfield, WGF, Hubbard, SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9: 313-316
7. Holden, PR, Brookfield, JFY, Jones, P (1993) Cloning and characterization of an $f t s Z$ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Genet 240: 213-220
8. Huigens, ME, de Almeida, RP, Boons, PAH, Luck, RF, Stouthamer, R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc Lond B 271: 509-515
9. Hurst, GDD, Hurst, LD, Majerus, MEN (1992) Selfish genes move sideways. Nature 356: 659-660
10. Jiggins, FM, Schulenburg, JHGvd, Hurst, GDD, Majerus, MEN (2001) Recombination confounds interpretations of Wolbachia evolution. Proc R Soc Lond B 268: 1423-1427
11. Kittayapong, P, Jamnongluk, W, Thipaksorn, A, Milne, JR, Sindhusake, C (2003) Wolbachia infection complexity among insects in the tropical rice-field community. Mol Ecol 12: 10491060
12. Malloch, G, Fenton, B (2005) Super-infections of Wolbachia in byturid beetles and evidence for genetic transfer between A and B super-groups of Wolbachia. Mol Ecol 14: 627-637
13. Miles, PW (1968) Insect secretions in plants. Annu Rev Phytopathol 6: 137-164
14. Mitsuhashi, W, Saiki, T, Wei, W, Kawakita, H, Sato, M (2002) Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Mol Biol 11: 577-584
15. Noda, H, Miyoshi, T, Zhang, Q, Watanabe, K, Deng, K, Hoshizaki, S (2001) Wolbachia infection shared among planthoppers (Homoptera : Delphacidae) and their endoparasite (Strepsiptera :

Elenchidae): a probable case of interspecies transmission. Mol Ecol 10: 2101-2106
16. O'Neill, SL, Giordano, R, Colbert, AME, Karr, TL, Robertson, HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699-2702
17. Posada, D, Crandall, KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818
18. Purcell, AH (1985) The ecology of bacterial and mycoplasma plant diseases spread by leafhoppers and planthoppers. In: Nault, LR, Rodriquez, JG (Eds.) The Leafhoppers and Planthoppers. Wiley, NY, pp 351-380
19. Rigaud, T, Juchault, P (1995) Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J Evol Biol 8: 249-255
20. Sambrook, J, Fritsch, EF, Maniatis, T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
21. Sanger, F (1988) Sequences, sequences and sequences. Annu Rev Biochem 57: 1-28
22. Schilthuizen, M, Stouthamer, R (1997) Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc R Soc Lond B 264: 361-366
23. Stevens, L, Giordano, R, Fialho, RF (2001) Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Ann Rev Ecol Syst 32: 519-545
24. Stouthamer, R, Breeuwer, JAJ, Hurst, GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53: 71-102
25. Swofford, DL (1999) PAUP: Phylogenetic Analysis Using Parsimony. Centre for Agriculture and Bioscience International, Champaign, IL
26. Van Meer, MMM, Witteveldt, J, Stouthamer, R (1999) Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol Biol 8: 399-408
27. Vavre, F, Fleury, F, Lepetit, D, Fouillet, P, Bouletreau, M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16: 1711-1723
28. Werren, JH, Zhang, W, Guo, LR (1995) Evolution and phylogeny of Wolbachia-reproductive parasites of arthropods. Proc R Soc Lond B 261: 55-63
29. Werren, JH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587-609
30. Werren, JH, O'Neill, SL (1997) The evolution of heritable symbionts. In: O'Neill, SL, Hoffmann, AA, Werren, JH (Eds.) Influential Passengers. Inherited Microorganisms and Arthropod Reproduction. Oxford, New York, pp 1-42
31. Werren, JH, Bartos, JD (2001) Recombination in Wolbachia. Curr Biol 11: 431-435
32. Zhou, W, Rousset, F, O'Neill, SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265: 509-515

[^0]: Correspondence to: J. R. Milne; E-mail: frjrm@mahidol.ac.th

[^1]: Only insects and no other types of arthropod were found. Species that tested positive using ftsZ primers are underlined; Wolbachia infection was not confirmed by wsp sequencing. Plant parts (PP): L: leaf; Fr: fruit; Fl: flower.

