1 Negative effect of alkaline-saline and sodium hypochlorite washing on the

- 2 physicochemical properties and gel-forming ability of oxeye scad
- 3 (Selar boops) surimi
- 4 Chantira Wongwichian¹, Manat Chaijan^{1*}, Worawan Panpipat¹ and Sappasith Klomklao²
- 5
- 6 ¹Division of Agro-Industry, School of Agricultural Technology, Walailak University,
- 7 Thasala, Nakhon Si Thammarat, 80161 Thailand.
- 8 ² Department of Food Science and Technology, Faculty of Technology and Community Development, Thaksin
- 9 University, Phatthalung Campus, Phatthalung 93110, Thailand.
- 10 * Corresponding author. Tel.: +66 7567 2384; fax: +66 7567 2301. E-mail address: cmanat@wu.ac.th
- 11 (M. Chaijan).
- 12 Received: / Accepted: / Published:

13

14

15 Abstract:

16	Physicochemical properties and gel-forming ability of oxeye scad surimi produced by washing with
17	different media (distilled water, alkaline-saline solution (0.15% NaCl in 0.2% sodium bicarbonate) and 20 ppm
18	sodium hypochlorite (NaOCI) solution) were investigated. The lowest Ca ²⁺ -ATPase activity and protein solubility
19	with the highest TCA-soluble peptide content were found in surimi produced by alkaline-saline washing process
20	(p<0.05), suggesting the highest degree of protein denaturation and hydrolysis induced by this process. The
21	decrease in reactive sulfhydryl content with a concomitant increase in disulfide bond formation were found in
22	surimi produced by NaOCI washing process (p<0.05). The most efficacy in lipid and myoglobin removal with the
23	lowest metmyoglobin formation was found in surimi prepared with alkaline saline washing process (p <0.05).
24	However, surimi conventionally prepared by water washing had the lowest TBARS value and showed the gel
25	with greater breaking force and deformation than those did by alkaline-saline and NaOCI washing processes
26	(p <0.05). Higher expressible drip and TCA-soluble peptide were also found in the gels of surimi prepared by
27	alkaline-saline and NaOCI washing processes compared to water washed surimi (p <0.05). However, alkaline-
28	saline washing seemed to gradually improve the whiteness of surimi gel. Washing with alkaline-saline and
29	NaOCI solutions showed detrimental effects on physicochemical and textural properties of oxeye scad surimi.
30	Therefore, conventional water washing was still necessary for the production of surimi from oxeye scad muscle.
31	Keywords: physicochemical properties, gel-forming ability, oxeye scad, surimi, washing